Showing posts with label photon. Show all posts
Showing posts with label photon. Show all posts

Tuesday, September 4, 2012

Dreaming in Geneva - FQXi essay

The theme for this year's FQXi contest topic is "Questioning the Foundations: Which of Our Basic Physical Assumptions are Wrong?". I had some difficulty to start with this topic (I didn't seem to be the only one, see Ajit Jadhav's blog here and there). I had a lot of things to say about what has gone wrong with physics, which assumptions had to be reconsidered. So, since the opening of the contest, I regularly put some ideas in a draft, being confident that I would be able to arrange them into a coherent thesis for the essay. However by the 20th of August (ten days before closing), I still didn't know how I could write them together into an essay without being suspected of "trotting out my pet theory" (see warning in the Evaluation Criteria).

My "pet theory" is simple: the fundamental entity in physics is "THE quantum particle" which you can represent as an arrow (a vector, a ket). From the mechanical interactions between such rod-like particles, you may deduce all of physics, provided that you assume some complementary parameters (such as the velocity at which two particles fly one from another = c, the length of the rod = Bohr diameter of hydrogen). No mass, no force, no charge, etc. Just paths of rotating arrows that interact with each other through contact (collision). This is the way I reason about photons, electrons, quarks, fields, waves, etc. But I can't reasonably write it that way in an essay. I would need to recall a lot of history of science. So I chose to bring up some ideas that have emerged in history of science that we could reconsider, not necessarily in the same way, but gaining insight with hindsight.

Also I prefer to avoid abstract mathematics when talking physics. Mathematics is just a language, very convenient though, but really just a language that can hinder us in our intuitive understanding. Instead of math, scientists could as well use words, fantasy, dreams, pictures, poems maybe. It is an art and sometimes it is necessary to change the expression of this art. I hope you'll enjoy my dreaming in Geneva.

Wednesday, August 15, 2012

Louis de Broglie - 120th birthday anniversary

Exactly 120 years ago, on August 15th, 1892, Louis de Broglie was born in Dieppe, a little town on the coast of Normandy. De Broglie is one of my favorite physicists because he has tried to conciliate quantum theory with intuition. He entered the physics stage after the first World War, where he had served as radiographer on the Eiffel tower. That stimulated his interest in electromagnetic radiation questions. At that time, it became clear that electromagnetic radiation could be explained as well by wave mechanics (constructive and destructive interference as evidenced by Thomas Young in 1803), as by a collection of particles (photoelectric effect explained by Albert Einstein in 1905). Louis de Broglie made an important following step: if light had dual wave-particle behavior, matter also should have that duality.

De Broglie tried to interpret this duality as phase matching between a particle embedded in a wave, the pilot wave. There should be phase matching between both: "les photons incidents possèdent une fréquence d’oscillation interne égale à celle de l’onde (my translation: the incident photons have an internal oscillation frequency equal to that of the wave)". He saw photons, as well as electrons, as little clock-watches embedded in their wave. I am sure this intuition will lead to new physics in the future, because this aspect of duality has hardly been investigated, see Couder's bouncing droplets in pilot wave. Personally I am working with this pilot wave idea in order to explain some properties of quantum dots.

As Louis de Broglie lived his last years in a little town, Louveciennes, that is close to where I live, I had a walk there today. Maybe I could find some place related to him. Unfortunately, I didn't find the exact location of his residence  (please drop a comment if you know). But surely the scenery of the pictures below near to the royal residence of the Manoir du Coeur Volant must have been very familiar to him.
Manoir du Coeur Volant

Abreuvoir of Marly-le-Roi

Royal Domain of Marly-le-Roi

Commemoration plaque of the Manoir du Coeur-Volant

Sunday, October 24, 2010

Explaining electron spin and Pauli exclusion principle to children

Fundamental particles are the building blocks of nature, of which the photon and the electron have the most visible impact on our everyday life. Photons are all pervasive. If they have the right energy, they can stimulate your eyes' photoreceptor cells. At other energies they will warm you up because they radiate from a warm object. Electrons are more energetic than the photons. They can either be free in space, or bound in atoms. Through their motion, they transmit motion to photons, which in turn can excite other electrons at distant places. This phenomenon, known as electromagnetism, is used in all wireless transmissions. Photons are the electromagnetic force carriers and electrons are the electromagnetic force sources.

In order to understand the behavior of photons and electrons, it is important to have analogies that help us keeping track of them. In previous posts, I mentioned some helpful analogies for photons (for example at this post on polarization). Although electrons also show wave behavior, they act a bit differently from photons. You can not stack electrons near to one another, except if they have compatible spinning motions. For spinning motions to be compatible means that the electrons must:
  • either spin at rates whose proportions are expressed with integers: for example one electron spins twice as fast as the other electron,
  • or spin in different directions, if they spin with the same velocity.
I sometimes come across situations that remind me of electrons. If you're standing in the bus or in the metro, you grip a pole to keep equilibrium. In the metro-train in my Paris suburb, the poles occur in pairs, like in the picture aside. When my children were younger, one of their favorite games was to spin around those poles. For parents, if you let your kids spin around the poles disorderedly, this game can be quite stressful, ending with fighting or crying. I used to explain to them that they had to spin like electrons in atoms. If one kid spins in one direction, the other kid needs to spin in opposite direction, in order to avoid hard clashes. I recently asked them if they could do it again so that I could put it on movie and post it to illustrate this electron analogy. But they've grown up and are now ashamed to play such games:-) So I decided to create the following simple animations that illustrate the electron spin and the Pauli exclusion principle.

Right-hand grip ruleA kid spinning around the pole is alike an electron spinning around a proton in its state of minimum energy, see Figure 1. Physicists designate the spinning direction with the help of the right hand rule. The kid of Figure 1 therefore has its spin down.

If your second kid spins in the same direction around the other pole, you can be sure that this game won't last for long. Their motions are incompatible and it ends up with a clash, see Figure 2.

If you want them to play peacefully, you need to instruct them to follow a natural rule: the Pauli exclusion principle, illustrated in Figure 3. Electrons with same spinning velocity and sharing the same space can only occur if their spins are opposite. Very useful rule to keep harmony in the family!

Sunday, January 4, 2009

State of polarization of a triphoton

The indeterminacy in the state of polarization of a combined state of three photons (a triphoton) may be pictured on a sphere. Krister Shalm, Rob Adamson and Aephraim Steinberg of University of Toronto's Department of Physics and Centre for Quantum Information and Quantum Control, published their work in Nature and have some very interesting pictures and animation on the squeezing of the state of polarization of a triphoton. I wonder how we could picture this with spinning arrows. I should have a closer look at it.

Monday, June 30, 2008

First video sequence of Common Sense Quantum Physics

Today I published my first video sequence presenting Quantum Physics intuitively. I hope to have another six or seven sequences mixing theoretical and experimental analogies.



Here is the videoscript:

Hello, I'm Arjen, the Common Sense Quantum Physicist. My goal is to bring Quantum Mechanics nearer to intuition. As an introduction, we'll look at a characteristic property of light : the polarization. Light may be polarized in some cases, that means that it can take a characteristic orientation.

For example, the sunlight reflected from this surface is polarized in such a way that it is filtered by these sunglasses if I wear them horizontally on my nose. If I turn my head, I am dazzled by the reflected light.

So, how could we explain this ?

Firstly, we need to know that a polaroid film is deposited on these sunglasses. A polaroid film is in fact a bunch of molecules that are arranged parallelly on the glass of the spectacles.

Secondly, we take advantage of a scientific representation of light. Light is composed of tiny particles, that we call photons. In quantum physics, a photon is represented by a little spinning arrow. One way to understand light is then to visualize it as a flux of little spinning arrows guided by a wave. When an arrow bounces from a reflecting surface, it affects its spinning direction. Before the reflection, the arrow is spinning in a random direction. The reflecting surface then rearranges that in a definite spinning direction and the polaroid film filters the photons depending on their spinning direction.

Let us simulate this polaroid filtering with ordinary objects.

Firstly, we have this safety barrier representing the polaroid film on the sunglasses.

Secondly, we have this rotating rod that represents the spinning arrow. If the rod is spinning perpendicularly to the rails of this barrier, it will nearly never pass the grid... If the rod is spinning parallelly to the grid, the probability is much higher. If it is spinning in any other direction, it is just a matter of probability.

So this experiment learns us two important things about the behaviour of the particles composing light.

Firstly, a photon is represented by a rotating arrow. The photon is a prototype of all quantum particles, in fact it is the simplest of all quantum particles. While in ordinary classical mechanics, particles are represented by points or spherical objects, like bullets or tennis balls, in Quantum Mechanics, the objects are represented by rotating arrows or rods or baseball bats, scientists say vectors. This constitutes the core of Quantum Mechanics. A very famous physicist, Richard Feynman, once presented Quantum Mechanics as the science of drawing arrows. You'll find that in this very clear presentation of Quantum ElectroDynamics : " All we do is draw arrows, that's all ".

The second important thing that we learn through this experiment is that quantum measurements are a matter of probability. The quantum rules do not give certainty about the result of an experiment. Quantum Mechanics only give odds about measurements under given conditions.

So remember these two important facts when dealing with light...

[1] photons are best represented by little arrows and

[2] measurement on these arrows is a matter of probability.

Next time, we'll look at how we may characterize the physics of quantum particles.

Sunday, December 23, 2007

Why 'Common Sense' Quantum Physics?

Quantum Physics is generally presented as a weird, non intuitive field of Physics. The domain of application is however that of the simplest systems: discrete particles evolving in a carefully controlled environment. Such systems therefore obey the most fundamental laws of physics. And who says "fundamental" says: simple, intuitive, common sense, natural... My conviction is that quantum laws are the simplest way to express how nature behaves. Or said otherwise: quantum physics is intuitive, with respect to classical physics that is artificially constructed. In order to see this, we must however approach Quantum Physics in a perspective that remains unexplored. Rather than to try to link it to classical and relativistic physics, we ought to take a more direct way.

I love the way Feynman presents Quantum Physics. In his renowned public lecture QED: The Stange Theory of Light and Matter (1985), he says: You will have to brace yourselves for this - not because it is difficult to understand, but because it is absolutely ridiculous: All we do is draw little arrows on a piece of paper - that’s all! That's the essence of Quantum Physics: arrows. Mathematicians call arrows vectors, and there are very advanced, abstract ways to describe operations on such objects. But the mathematical artillery must not hide the fact that physically, we are handling with very simple objects: objects that are alike arrows, or rods, or needles, or ballpens, or baseball bats.

A child knows intuitively how such objects behave. Tintin's cartoon "Ottocar's scepter" shows a comic situation, in which the clue consists in correctly inferring how such an object could pass through a grid. In order to make sense of Quantum Physics, we'll have to brace ourselves for this: all we do is draw little arrows. So how could arrows help us to grasp the essence of Quantum Physics? The first thing is maybe to re-read Feynman's QED, or just visioning its 4 QED public lectures: http://vega.org.uk/video/subseries/8. Than just think about it.

There is not simpler a particle than a photon (apart maybe of a neutrino which is experimentally equivalent to a photon with zero frequency):
  • it has no inertia, its departing velocity with respect to the emitter is always the same (provided it does not find obstacles on its way),
  • it has a very simple polarization, when correctly oriented, it passes through a wire grid,
  • when constrained between two limits, its frequency may take only discrete values,
  • many photons with the same polarization may be beamed together,
  • in the quantum ocean of other quantum particles (essentially other photons or neutrinos), one photon creates and interacts with (we say interfers with) the wave it generates in that ocean (physicists speak of a field).

Such a particle may be represented by a rotating arrow whose rotational plane has a constant orientation between two obstacles.

This common sense way of interpreting Quantum Mechanics is explored at Wikiversity/Making_Sense_of_Quantum_Mechanics.